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Abstract

An algorithm for modeling the strain and rotation of deformable ellipsoidal objects in viscous flows based on Eshelby’s (1957. Proceedings of
the Royal Society of London A241, 376e396) theory is presented and is implemented in a fully graphic mathematics application (Mathcad�,
http://www.mathsoft.com). The algorithm resolves all singular cases encountered in modeling large finite deformations. The orientation of el-
lipsoidal objects is specified in terms of polar coordinate angles which are easily converted to the trend and plunge angles of the three principal
axes rather than the Euler angles. With the Mathcad worksheets presented in the supplementary data associated with this paper, one can model
the strain and rotation paths of individual deformable objects and the development of preferred orientation and shape fabrics for a population of
deformable objects in any homogeneous viscous flow. The shape and preferred orientation fabrics for a population of deformable objects can be
presented in both a three-dimensional form and a two-dimensional form, allowing easy comparison between field data and model predictions.
The full graphic interface of Mathcad� makes using the worksheets as easy as using a spreadsheet. The modeler can interact fully with the
computation and customize the type and format of the output data to best fit the purpose of the investigation and to facilitate the comparison
of model predictions with geological observations.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Deformation of the composite material made of one phase
(variably called inclusion, object, clast, particle, inhomogene-
ity, or impurity in the literature) dispersed in another continuous
phase (called matrix) has been a subject of research in the broad
field of materials science for over a century (Einstein, 1896,
1911, as cited by Jeffery, 1922; Jeffery, 1922; Eshelby, 1957,
1959; Goldsmith and Mason, 1967; Mura, 1987 and references
therein). Many rock types in Earth’s lithosphere resemble this
composite material, such as conglomerates, igneous rocks con-
taining enclaves, xenoliths, or clasts, the melt-crystal mesh at
the late stage of magma crystallization, porphyroblast-bearing
metamorphic rocks, and porphyroclast-bearing tectonites.
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A variety of questions have been addressed for the deformation
of this composite material including how the presence of inclu-
sions, rigid or deformable, affects the bulk rheological proper-
ties of the material (Jeffery, 1922; Goldsmith and Mason, 1967;
Treagus, 2002; Treagus and Treagus, 2001, 2002; Fletcher,
2004; Liu and Hu, 2004; Lee and Paul, 2005; Benedikt et al.,
2006; Ma et al., 2006), how the motion of an inclusion is re-
lated to the bulk deformation kinematics and strain in 3D defor-
mation (Jeffery, 1922; Eshelby, 1957, 1959; Gay, 1968a,b;
Bilby et al., 1975; Bilby and Kolbuszewski, 1977; Freeman,
1985, 1987; Passchier and Simpson, 1986; Passchier, 1987)
or in 2D deformation (Ghosh and Ramberg, 1976, for rigid,
and Bilby and Kolbuszewski, 1977, for deformable elliptical
inclusions), and how shape and preferred orientation fabrics
evolve with deformation for a population of inclusions (Gay,
1966; Reed and Tryggvason, 1974; Tullis, 1976; Jezek et al.,
1994, 1996; Masuda et al., 1995; Launeau and Cruden, 1998;
Jiang, in press). There are also many recent works on how
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the rotational behavior of rigid objects in a viscous flow may be
affected by (1) the interface property between the matrix and
the object (Ildefonse and Mancktelow, 1993; Mancktelow
et al., 2002; Ceriani et al., 2003; Schmid and Podladchikov,
2004, 2005; Mandal et al., 2005b), (2) the boundary con-
straints where the rigid objects are large compared to the thick-
ness of the hosting shear zone (Marques and Coelho, 2001),
(3) the interaction between objects (Ildefonse et al., 1992a,b;
Marques and Bose, 2004; Mandal et al., 2005b), and (4) the
matrix anisotropy (Mandal et al., 2005a).

This paper is concerned with the motion of deformable
inclusions in slow flows. One very special case for the inclu-
sion-bearing material is where the inclusions have identical
mechanical properties as the matrix so that the inclusions
are passive markers. Ramsay (1967) and Dunnet (1969) have
established the relationship between the bulk strain ellipsoid
and the shape and orientation fabric defined by passive ellip-
soidal inclusions (see also, Lisle, 1985). A second special
case is where the inclusions are needle-like or flake-like grains
and therefore their behaviors approximate, respectively, mate-
rial lines and planes to which March’s (1932) theory applies
(e.g., Tullis, 1976). A third special case is where the inclusions
are small rigid ellipsoidal objects to which Jeffery’s (1922)
theory applies. Jeffery’s (1922) theory has been extended to
more general cases by Bretherton (1962) and Willis (1977)
and has been tested by many experiments (Taylor, 1923; Eirich
and Mark, 1937; Trevelyan and Mason, 1951; Goldsmith and
Mason, 1967; Robertson and Acrivos, 1970; Ghosh and
Ramberg, 1976; ten Brink, 1996; Arbaret et al., 2001). Beyond
the above special cases, the general situation is where the inclu-
sions are deformable and exhibit a competence contrast with re-
spect to the surrounding matrix. Eshelby (1957, 1959) develops
the theory for the motion of deformable ellipsoidal inclusions
embedded in a continuous matrix. The original theory (Eshelby,
1957, 1959) was formulated for the case where both the inclu-
sion and the matrix are isotropic and linearly elastic. It has been
extended to the case where both the inclusion and the surround-
ing matrix are linear viscous fluids with different viscosities
(Bilby et al., 1975; Bilby and Kolbuszewski, 1977). To the mo-
tion of a deformable inclusion embedded in a slow viscous flow,
Eshelby’s theory is what Jeffery’s theory is to the motion of
a rigid inclusion embedded in a slow viscous flow.

Compared to Jeffery’s theory, Eshelby’s theory is inevitably
more complex. Because a rigid object does not change shape,
its orientation completely defines its instantaneous state which
amounts to three variables: either the three Euler angles (Jeffery,
1922; Bretherton, 1962; Freeman, 1985) or the three polar
coordinate angles used by Jiang (in press) which in general
are equivalent to the trend and plunge of one principal axis
plus the trend of a second principal axis. For a deformable ob-
ject, its instantaneous state must be defined by its orientation
(three variables), competence contrast relative to the matrix
(one variable), as well as the instantaneous lengths of the three
principal axes (three variables). Altogether, seven variables are
required to define an instantaneous state of a deformable ellipsoi-
dal object. This makes Eshelby’s theory more complex than Jef-
fery’s. The associated equations are also more challenging and
computationally more intensive to solve. So far, Freeman
(1987) has only made attempt on the numerical solution of Eshel-
by’s equations in comparison with many numerical solutions to
Jeffery’s equations (see Jiang, in press and references therein).

The purpose of this paper is to achieve, for modeling the
motion of deformable inclusions based on Eshelby’s (1957,
1959) theory, what Jiang (in press) has achieved for modeling
the motion of rigid inclusions based on Jeffery’s (1922) theory.
Specifically, I develop an algorithm for solving Eshelby’s
equations and implement it in a fully graphic mathematics ap-
plication, Mathcad� (http://www.mathsoft.com), so that the
modeling is as simple and user-friendly as using a spreadsheet.
Examples of application are presented in the paper for many
cases to demonstrate the robustness of the worksheets. How-
ever, the focus of the paper is on the algorithm and its imple-
mentation, not on a systematic investigation of the behavior of
deformable inclusions in viscous flows.

2. Summary of Eshelby’s theory

Eshelby (1957, 1959) considers the elastic field inside and
outside an ellipsoidal inclusion embedded in an infinite elastic
body. Both the inclusion and the encompassing matrix are iso-
tropic and linearly elastic but may have different elastic con-
stants. Although the elastic field in the vicinity outside the
inclusion is heterogeneous (Eshelby, 1959), Eshelby (1957)
discovered, remarkably, that within the inclusion the elastic
field is perfectly homogeneous as long as the inclusion is ellip-
soidal. By the well-known equivalence between the theory of
linear elasticity and the theory of Newtonian fluids, Eshelby’s
theory is readily formulated for the case where both the inclu-
sion and the encompassing matrix are Newtonian fluids but
with, in general, different viscosities (Bilby et al., 1975). I
summarize Eshelby’s theory below, starting with some neces-
sary background on the mathematical description of the kine-
matics of motion in different reference frames and their
associated coordinate systems.

2.1. Flow described in different reference frames and the
rotation of one reference frame with respect to another

Let us denote the instantaneous lengths of the three princi-
pal semi-axes of the ellipsoidal inclusion a1, a2, and a3 and
consider two reference frames. One is the reference frame,
R0, always parallel to the principal axes of the ellipsoidal in-
clusion. The right-handed Cartesian coordinate system associ-
ated with R0 is x1

0x2
0x3
0, with xi

0-axes parallel to the
corresponding ai-axes (i¼ 1e3, Fig. 1). Another reference
frame is the fixed external frame, R, in which the flow of
the matrix fluid is defined and the Cartesian coordinate system
associated with it is x1x2x3 (Fig. 1). We now describe the ma-
trix flow in each of the two reference frames and state the ro-
tation of R0 with respect to R mathematically.

In this paper, the following general scheme of mathematical
notation is used. Scalars are in lowercase italics (such as a1,
a2, a3 for the three semi-axial lengths of the inclusion), vectors
are in lowercase bold faces, and tensors are in uppercase bold
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faces. A bold face letter without a prime sign stands for a vec-
tor or tensor defined in the R frame and expressed in xi-coor-
dinates (e.g., W stands for vorticity with respect to R and its
components, Wij, are stated in terms of xi-coordinates). A
bold face letter with a prime sign stands for a vector or tensor
defined in the R0 frame and expressed in x0i-coordinates (e.g.
W0 stands for vorticity with respect to R0 and its components,
W0ij, are in terms of x0i-coordinates). A bold face uppercase let-
ter with a wave bar (e.g., ~W) stands for a tensor defined with
respect to R but is expressed in xi

0 coordinates. This scheme of
notation is followed as far as possible in this paper; wherever
a new notation is used its meaning is fully explained.

Suppose the base unit vectors parallel to the xi
0 are e0i (i¼ 1, 2,

3 throughout the paper) which are all functions of time because
R0 rotates continuously with respect to R. The base unit vectors
parallel to xi are ei. A position vector in space can be expressed
either in terms of base vectors ei or base vectors e0i. In the former
case the vector is denoted x with xi coordinates and in the latter
case it is denoted x0 with xi

0 coordinates. The components of x
and x0 are related by (e.g., Spencer, 1980, pp.64e66):

x0 ¼Qx ð1aÞ

x¼QTx0 ð1bÞ

where Q is the transformation tensor (QT, its transpose) of co-
ordinates from xi to xi

0 defined by:

e0i ¼Qei ð2aÞ

ei ¼QTe0i ð2bÞ

x1

x1'

x3'

x2'

x2

x3

R’

R

a1

a2

a3

Fig. 1. Two reference frames R and R0 and their associated Cartesian coordi-

nate systems. R is the fixed external reference frame and its associated coor-

dinate system is x1x2x3. The flow of the matrix is defined in this frame and

coordinate system. R0 is always parallel to the three principal axes of the ellip-

soidal inclusion. The associated coordinate system is x1
0x2
0x3
0. The instanta-

neous three semi-axes of the inclusion are a1, a2, and a3 which can have

any relative lengths.
Being an orthogonal tensor, Q has the following property
(e.g. Basxar and Weichert, 2000, p. 29):

QQT ¼QTQ¼ I ð3Þ

where I is a unit tensor (Iij ¼ 0 if i s j, Iij ¼ 1 if i¼ j ).
The homogeneous matrix flow is described in R by its

Eulerian velocity gradient tensor L:

v¼ dx

dt
¼ Lx ð4Þ

where v is the particle velocity vector field as observed in R (v0

below is the particle velocity vector field as observed in R0).
To find out the expression of the velocity gradient of the

matrix flow in R0, we differentiate Eq. (1a) with respect to
time and make use of Eq. (1b) as well as Eq. (4), leading to:

v0 ¼ dx0

dt
¼ _QxþQ

dx

dt
¼
�

_QQT þQLQT
�
x0 ð5Þ

where the dot on top of Q stands for its derivative with re-
spect to time. From Eq. (5), the velocity gradient tensor L0

in R0 is:

L0 ¼ _QQTþQLQT ð6Þ

The velocity gradient tensors, L and L0, can be decomposed
into their corresponding symmetric strain rate tensors and anti-
symmetric vorticity tensors (e.g., Spencer, 1980) according to:

D¼ 1

2

�
LþLT

�
; W¼ 1

2

�
L�LT

�
ð7aÞ

D0 ¼ 1

2

�
L0 þL0T

�
; W0 ¼ 1

2

�
L0 �L0T

�
ð7bÞ

Applying this decomposition to Eq. (6) and making use of
the identity _QQT ¼ �Q _QT, which can be obtained by differ-
entiating Eq. (3) with respect to time, leads to:

D0 ¼QDQT ð8aÞ

W0 ¼QWQTþ _QQT ¼ ~Wþ _QQT ð8bÞ

Eq. (8) is the mathematical expression of the Zorawski theo-
rem (Truesdell and Topin, 1960, p. 440) which states: ‘‘For
a given flow, observers in two rigid frames moving arbitrarily
with respect to one another perceive the same stretching (i.e.,
strain rate), but vorticities which differ by the relative angular
velocity of the frames’’. To further explain the physical signif-
icance of the terms in Eq. (8b), let us write the vorticity trans-
formation between frames in a form similar to that used by
Lister (1982) and Lister and Williams (1983):

WR0 ¼WRþWR0

R ð9Þ

Eq. (9) states that the vorticity with respect to frame R0, WR0 , is
equal to the vorticity with respect to frame R, WR, plus the
vorticity appropriate for the angular velocity of frame R with
respect to frame R0, WR0

R . Comparing Eq. (8b) with Eq. (9),
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W0 ¼WR0 , and ~W is the vorticity with respect to R (i.e., WR ¼
~W) expressed in the same coordinates as W0. It is therefore

clear that the term Q$QT in Eq. (8b) is equal to WR0
R ,

representing the angular velocity of frame R with respect to
frame R0. Our interest is the angular velocity of R0 with respect
to R. Since WR0

R þWR
R0h0, we have:

WR
R0 ¼ �WR0

R ¼� _QQT ð10Þ
Eq. (10) is the tensor describing the instantaneous rotation

of the principal axes of the inclusion (R0) with respect to the
fixed reference frame (R). We denote this tensor ~Q hereafter:

~Q¼� _QQT ð11Þ
If stated in the xi coordinates, it is:

Q¼QT ~QQ ð12Þ
Since Q describes the instantaneous angular velocity of the

inclusion, to determine the rotation of the inclusion principal
axes with respect to R is to determine the time history of Q.

2.2. Flow within the ellipsoidal inclusion

Within the ellipsoidal inclusion, the flow is homogeneous
but differs from the matrix flow. Eshelby (1957, 1959) and
Bilby et al. (1975) show that the vorticity and strain rate ten-
sors for the flow within the inclusion, measured in R0 and ex-
pressed in xi

0 coordinates, are:

WE
ij ¼W 0

ij þ ð1� rÞPijklD
E
kl ð13aÞ

DE
ij ¼ D0ij þ ð1� rÞSijklD

E
kl ð13bÞ

where Sijkl and Pijkl are called Eshelby tensors (Mura, 1987;
Lee and Paul, 2005) that relate the flow inside the ellipsoid
with the flow of the matrix fluid, the superscript E stands for
the ellipsoidal inclusion, and r is the viscosity ratio of the el-
lipsoid to the matrix. The repeated subscript in Eq. (13) is
taken to imply summation over the values 1, 2, and 3 of that
subscript. This summation convention is used throughout the
paper unless a ‘no summation’ is declared locally.

The non-zero components of the two Eshelby’s tensors, ex-
pressed in the x0i coordinates, are (Eshelby, 1957):

In Eq. (14), the J-terms are defined as follows (Jeffery,
1922; Eshelby, 1957):

Siiii ¼
3

4p
a2

i Jii;

Siijj ¼
3

4p
a2

j Jij;

Sijij ¼
3

8p

�
a2

i þ a2
j

�
Jij

Pijij ¼Pijji ¼
Jj � Ji

8p
;

Pjiij ¼Pjiji ¼�Pijij no summation ð14Þ
Ji ¼ 2pa1a2a3

ZN

0

du

ða2
i þ uÞl ði¼ 1;2;3Þ

Jii ¼ 2pa1a2a3

ZN

0

du

ða2
i þ uÞ2l

ði¼ 1;2;3Þ

Jij ¼ 2pa1a2a3

ZN

0

du

ða2
i þ uÞ

�
a2

j þ u
�
l
ði¼ 1;2;3;

j ¼ 1;2;3; isjÞ ð15Þ

In the above equalities, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 þ uÞða2
2 þ uÞða2

3 þ uÞ
p

.

Mura (1987, pp. 79e84) gives the J-integrals in elementary
functions for all possible shapes of inclusions. This is only
useful in branches of materials science where the strain is
small and deformation history of the inclusion is simple
(e.g., Lee and Paul, 2005). In the process of a progressive de-
formation to large finite strains commonly encountered in ge-
ology, the shape of an inclusion may change from one special
shape to another (e.g., from a triaxial ellipsoid to a spheroid)
and it is also possible for the relative lengths of the principal
axes of an inclusion to change during deformation. It is not
possible to use the elementary function forms of Mura
(1987) for the J-terms; they must be in general evaluated
from the integrals of Eq. (15).

Eq. (13b) can be expanded to give the following equalities
for the strain rate tensor components of the ellipsoidal inclu-
sion (Freeman, 1987)1:

In the above equalities, K is defined as

K ¼ 1þ ðr� 1ÞðS1111þ S2222� S2233� S1133Þ
þðr� 1Þ2½S1111ðS2222� S2233Þ þ S1133ðS2211� S2222Þ
þS1122ðS2233� S2211Þ�

To find out the components of WE
ij , we proceed with the fol-

lowing. To ensure that the xi
0-axes always do coincide with the

DE
11¼

D011½1þðr�1ÞðS2222�S2233Þ�þD022½ðr�1ÞðS1133�S1122Þ�
K

DE
22¼

D011½ðr�1ÞðS2233�S2211Þ�þD022½1þðr�1ÞðS1111�S1133Þ�
K

DE
33¼�

�
DE

11þDE
22

�
; DE

12¼
D012

1þ2ðr�1ÞS1212

;

DE
13¼

D013

1þ2ðr�1ÞS1313

; DE
23¼

D023

1þ2ðr�1ÞS2323
ð16Þ

1 The expansion of Eq. (13b) presented in Freeman (1987) contains some

errors/typos.
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x(north)

y(east)

z(down)

u

x

y

z

u

θ

θ

φ φ

Fig. 2. (a) The orientation of a line in 3D space can be represented by a unit vector, u, with two coordinate angles: q, the angle between the projection of u in xy

plane with the x-axis and f the angle between u and the z-axis. (b) If xyz is the geographic coordinate system and f< 90�, then q is the plunge direction of u and f

is the complementary angle of the plunge of u (i.e., the plunge angle¼ 90��f). If xyz is the geographic coordinate system and f> 90�, then q� 90� is the plunge

direction of u and f�90� is the plunge angle of u.
principal axes of the ellipsoid, we follow Goddard and Miller
(1967) and Bilby and Kolbuszewski (1977) by defining the in-
stantaneous ellipsoid surface by the following equation:

Gijx
0
ix
0
j ¼ 1 ð17Þ

where Gij is the ellipsoid tensor for the instantaneous inclusion
surface. We require that Gij be diagonal with the components
Gii ¼ 1=a2

i for i¼ j and Gij ¼ 0 for i s j. This ensures that the
xi
0-axes are always parallel to the principal axes of the ellip-

soid. Differentiating Eq. (17) with respect to time and using
the symmetry of Gij and the fact that within the ellipsoid
and on its surface, ðdx0i=dtÞ ¼ ðDE

ij þWE
ij Þx0j, we obtain

(Eq. (4); Bilby and Kolbuszewski, 1977):

dGij

dt
þGis

�
DE

sj þWE
sj

�
þGjs

�
DE

siþWE
si

�
¼ 0 ð18Þ

The above equation leads to:

dGij

dt
þ
�
GiiþGjj

�
DE

ijþ
�
Gii�Gjj

�
WE

ij ¼ 0 no summation ð19Þ

This equation is examined for two different situations below.

2.2.1. The situation the inclusion is a triaxial ellipsoid
For a triaxial ellipsoid, aisaj (equivalent to GiisGjj) and

Eq. (19) gives the following relations for the vorticity of the
flow inside the inclusion and the instantaneous strain rates
along the principal axes of the ellipsoid:

WE
ij ¼

a2
i þ a2

j

a2
i � a2

j

DE
ij ; ifaisaj no summation ð20Þ

dai

dt
¼ aiD

E
ii ði¼ 1;2;3Þ no summation ð21Þ

Combining Eqs. (8b), (11), (13a), and (20), we have for a tri-
axial ellipsoid:

~Qij ¼ ~Wij � ðr� 1ÞPijklD
E
kl�

a2
i þ a2

j

a2
i � a2

j

DE
ij summation over

k ð ¼ 1;2;3Þ and l ð ¼ 1;2;3Þ only ð22Þ

The three independent non-zero components of ~Q are then:

~Q12
¼ ~W

12
�2ðr�1ÞP1212DE

12�
a2

1þa2
2

a2
1�a2

2

DE
12 ða1sa2Þ

~Q13¼ ~W13�2ðr�1ÞP1313DE
13�

a2
1þa2

3

a2
1�a2

3

DE
13 ða1sa3Þ

~Q32¼ ~W32�2ðr�1ÞP3232DE
23�

a2
3þa2

2

a2
3�a2

2

DE
23 ða2sa3Þ ð23Þ
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(a) (b) (c)

(d) (e) (f)

(g)

(j)

(m)

(h)

(k)

(n)

(i)

(l)

(o)

1

1

1

2

2

2

2

1

1

2

3

3

1

2

Fig. 3. Rotation paths of a triaxial inclusion with initial axial length ratios of 5:3:1 and initial orientation of (170�, 45�, 30�) in simple shear for various viscosity

ratios (numerical experiment set 1). The final shear strain is 10. (aec) The paths, respectively, for a1, a2, and a3 axes for viscosity ratio of 0.1. (def) The paths for

viscosity ratio of 1. (gei) The paths for viscosity ratio of 5. (jel) The paths for viscosity ratio of 20. (m, n, o) The paths for a rigid inclusion (5:3:1) with the same

initial orientation modeled using Mathcad worksheet of Jiang (in press). Arrows in each plot indicate the strain increase direction and numbers indicate the order of

the rotation paths. In this and all subsequent figures, the geographic coordinate system (Fig. 2b) is used. The flow is a simple shear with the shear direction parallel

to the x-axis, and the sense of shear is sinistral.
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0

0.5
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K=1

r=0.1

r=1

r=5

r=20

ln(a2/a3)

ln
(a

1/
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)

Fig. 4. The paths for the shape change of the inclusion in numerical experi-

ment set 1 presented in a logarithm Flinn plot.
2.2.2. Singular cases where the inclusion is
a spheroid or sphere

In the event that the ellipsoid is spheroidal (ai ¼ aj, equiv-
alent to Gii ¼ Gjj) (either so shaped initially or the inclusion
passes through this shape at some instant in its course of de-
formation), Eq. (20) is singular and the angular velocity of
the principal axes of the object is undefined. We note that in
this case Eq. (19) becomes

dGij

dt
þ 2GiiD

E
ij ¼ 0 ðisjÞ no summation ð24Þ

Unless DE
ij ¼ 0, the above equation cannot hold under the con-

dition of Gij¼ 0 (i s j ) which is required to ensure that the x0i
axes are always the principal axes of the ellipsoid (Goddard
and Miller, 1967). To ensure that DE

ij ¼ 0, the xi
0- and xj

0-axes
on the circular aiaj-section of the ellipsoid must be exactly par-
allel to the principal directions of the flow of the ellipsoid on that
section. By examining Eq. (16), it can be seen that DE

ij vanishes
(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h)

(k)

(i)

(l)

1

2

Fig. 5. Rotation paths of an initially oblate inclusion with axial length ratios of 5:5:2 and initial orientation of (170�, 45�, 30�) in simple shear for various viscosity

ratios (numerical experiment set 2). The matrix final shear strain is 10. (aec) The paths, respectively, for a1, a2, and a3 axes for viscosity ratio of 0.1. (def) The

paths for viscosity ratio of 1. (gei) The paths for viscosity ratio of 5. (jel) The paths for viscosity ratio of 20.
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Fig. 6. The paths for the shape change of the inclusion in numerical experi-

ment set 2 presented in a logarithm Flinn plot.
when D0ij vanishes. That is the principal directions of DE coin-
cide with those of D0. Therefore at the instant ai¼ aj, instead
of letting ~Qij, which is not definable when ai¼ aj, decide the ro-
tation of e0i and e0j, we can perform a rotation on them around e0k
axis until they are parallel, respectively, to the two principal di-
rections of the sectional flow on the aiaj-plane at that instant so
that Eq. (24) is satisfied. To do so, we first find the principal di-
rections of the sectional flow on the aiaj-plane (ai¼ aj s ak) by
taking the eigenvectors of the 2D submatrix of D0, that is

Dplane ij ¼
�

D0ii D0ij

D0ij D0jj

�
ð25Þ

The direction of the maximum principal rate of Dplane ij

makes an angle 6ij with respect to the current e0i-axis defined by:

6ij¼ tan�1

0
BBB@

D0jj�D0iiþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

D0ii�D0jj

�2

þ4D02ij

r

2D0ij

1
CCCA no summation

ð26Þ
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Fig. 7. Rotation paths of an initially prolate inclusion with axial length ratios of 5:2:2 and initial orientation of (170�, 45�, 30�) in simple shear for various viscosity

ratios (numerical experiment set 3). The matrix final shear strain is 10. (aec) The paths respectively for a1, a2, and a3 axes for viscosity ratio of 0.1. (def) The

paths for viscosity ratio of 1. (gei) The paths for viscosity ratio of 5. (jel) The paths for viscosity ratio of 20.
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We now rotate the existing e0iðtnÞ and e0jðtnÞ axes around the
e0kðtnÞ-axis by the angular amount of 6ij. Since this is a finite
rotation, the axes after rotation are, respectively (Spencer,
1980, pp. 64e66; Basxar and Weichert, 2000, pp. 29e33):

e0�k ðtnÞ¼e0kðtnÞ

e0�i ðtnÞ¼cos6ije
0
iðtnÞþsin6ije

0
jðtnÞ ðisjskÞand no summation

e0�j ðtnÞ¼�sin6ije
0
iðtnÞþcos6ije

0
jðtnÞ

ð27Þ

To disable the effect of the ij-component of ~Q ( ~Qij ¼
�~Qji), which is not definable, set ~Qij ¼ �~Qji ¼ 0. We thus
can extend Eq. (23) to include the singular case where the
inclusion is a spheroid:

The rotation tensor in the xi coordinates, Q, is obtained
from Eq. (28) by using Eq. (12).

By the same argument, in the event the inclusion is in-
stantaneously a sphere (and every component of Q is zero
according to Eq. (28)), e0iðtnþ1Þ are set to be parallel to the
three principal directions of DE. Since the principal direc-
tions of DE and D coincide in this case, we simply take
the eigenvectors of D and assign them as the new directions
for the instantaneous state the inclusion is a perfect sphere,
that is,

e0iðtnþ1Þ ¼ eigenvectors of D; if object is sphere at tn

ði¼ 1;2;3Þ ð29Þ

2.3. Rotation and strain of the ellipsoidal inclusion

The rotation of the principal axes of the ellipsoid is de-
scribed by the time rate of e0i (Eq. (6) of Jiang, 1999). The ro-
tation and shape change of the ellipsoid are completely
described by:

de0i
dt
¼Qe0i ði¼ 1;2;3Þ ð30aÞ

~Q12¼
					

0 if a1¼ a2

~W12�2ðr�1ÞP1212DE
12�

a2
1þa2

2

a2
1�a2

2

DE
12 otherwise

~Q13¼
					

0 if a1¼ a3

~W13�2ðr�1ÞP1313DE
13�

a2
1þa2

3

a2
1�a2

3

DE
13 otherwise

~Q32¼
					

0 if a2¼ a3

~W32�2ðr�1ÞP3232DE
23�

a2
3þa2

2

a2
3�a2

2

DE
23 otherwise

ð28Þ
dai

dt
¼ aiD

E
ii ði¼ 1;2;3Þ no summation ð30bÞ

Eqs. (30a) and (30b) in general can only be solved numer-
ically. To do so, we use the RungeeKutta fourth-order method
(e.g., Jeffrey, 1995, pp. 340e341) which for Eq. (30a) leads to:

k1¼dtQðtnÞe0iðtnÞ

k2¼dtQ

�
tnþ

dt

2

��
e0iðtnÞþ

1

2
k1

�

k3¼dtQ

�
tnþ

dt

2

��
e0iðtnÞþ

1

2
k2

�
for a triaxial inclusion

k4¼dtQðtnþdtÞðe0iðtnÞþk3Þ

e0iðtnþ1Þze0iðtnÞþ
1

6
ðk1þ2k2þ2k3þk4Þ ði¼1;2;3Þ

ð31aÞ

k1 ¼ dtQðtnÞe0�i ðtnÞ

k2 ¼ dtQ

�
tnþ

dt

2

��
e0�i ðtnÞþ

1

2
k1

�

k3 ¼ dtQ

�
tnþ

dt

2

��
e0�i ðtnÞþ

1

2
k2

�
for a spheroid

k4 ¼ dtQðtnþ dtÞðe0�i ðtnÞþ k3Þ

e0iðtnþ1Þze0�i ðtnÞþ
1

6
ðk1þ 2k2þ 2k3þ k4Þ ði¼ 1;2;3Þ

ð31bÞ

where dt is a small time increment.
If the inclusion is a sphere, Eq. (29) is used to calculate its

orientation at the next time step.
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Fig. 8. The paths for the shape change of the inclusion in numerical experi-

ment set 3 presented in a logarithm Flinn plot.
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(d) Incompetent clasts (viscosity ratio of 0.1 for all clasts).
The RungeeKutta fourth-order approximation for Eq.
(30b) leads to:

h1¼dtDE
iiðtnÞaiðtnÞ

h2¼dtDE
ii

�
tnþ

dt

2

��
aiðtnÞþ

1

2
h1

�

h3¼dtDE
ii

�
tnþ

dt

2

��
aiðtnÞþ

1

2
h2

�

h4¼dtDE
iiðtnþdtÞðaiðtnÞþh3Þ

aiðtnþ1ÞzaiðtnÞþ
1

6
ðh1þ2h2þ2h3þh4Þ

ði¼1;2;3Þ no summation

ð32Þ

Both DE
iiðtnÞ and QðtnÞ are functions of the current orienta-

tion, e0iðtnÞ, and axial lengths, aiðtnÞ, of the object which can

be calculated for the current state of the object. To obtain
Qðtnþðdt=2ÞÞ, QðtnþdtÞ, DE
ii ðtnþðdt=2ÞÞ, and DE

iiðtnþdtÞ
for Eqs. (31) and 32, we do need to first obtain the object orien-

tation and axial lengths at tnþðdt=2Þ and at tnþdt. For this we

use the Euler approximation e0iðtnþðdt=2ÞÞze0iðtnÞþðdt=2Þ
QðtnÞe0iðtnÞ, e0iðtnþdtÞze0iðtnÞþdtQðtnÞe0iðtnÞ, aiðtnþðdt=2ÞÞ
zaiðtnÞþðdt=2ÞDE

iiðtnÞaiðtnÞ, and aiðtnþdtÞzaiðtnÞ þdtDE
ii

ðtnÞiaiðtnÞ. In the event the inclusion is a spheroid, e0�i ðtnÞ
(Eq. (27)) must be used in places of e0iðtnÞ for these Euler

approximations.
In summary, the new orientation e0iðtnþ1Þ and axial lengths

aiðtnþ1Þ of the object after a time increment dt can be ob-
tained once e0iðtnÞ, aiðtnÞ, and the viscosity contrast are
known. The initial axial lengths of the object and the viscos-
ity contrast are given. Jiang (in press) has shown how e0i for
the initial state can be calculated from the initial orientation
of the inclusion. Therefore, Eq. (30) can be solved numeri-
cally using the iterative computation of Eqs. (31) and (32).
Continuing with the computation for as many steps as
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needed, one tracks the rotation and strain paths of the object
from its initial state to its final state. The time increment dt
controls the precision of the numerical calculation. The Run-
geeKutta method is a very accurate method; the local errors
involved in the determination of e0iðtnþ1Þ and aiðtnþ1Þ from
e0iðtnÞ and aiðtnÞ are equivalent to the fifth order of dt (Jeffrey,
1995, p. 341). Therefore, an estimate of the error in the ori-
entation of the object for each time step computation is then
on the order of jujðdtÞ5, where juj is the magnitude of the
instantaneous angular velocity. If we take an angular
velocity of magnitude 1 Ma�1 (w3.17� 10�14 s�1), using
a dt¼ 0.01 Ma will yield an error on the order of 10�10 ra-
dians for each step of computation. The error in axial lengths
is on the same order.

3. Mathcad� worksheets for modeling strain and rotation
path of individual inclusions and preferred orientation
and shape fabrics defined by a population of
deformable inclusions

To determine the motion history of a deformable object is
to determine the time history of the lengths of its three prin-
cipal axes and their orientations. Following Jiang (in press),
the orientation of a line is defined by two polar coordinate
angles: the angle q between x-axis and the projection of
the line on the xy-plane, and the angle f between z-axis
and the line (Fig. 2a). The orientation of a triaxial ellipsoid
is defined by three coordinate angles e q1 and f1 for the
a1-axis plus q2 for the second axis. In the special case of
f1¼p/2, the triplet (q1, f1, f2) is used instead, where f2

is the angle for the a2-axis associated with the trend angle
q2¼ q1þ 90� (see Jiang, in press). The viscosity contrast
and the initial lengths of the principal axes of the inclusion
are given. From this initial state, successive states of the in-
clusion e the strain and rotation history of the inclusion e
can be tracked for any given bulk flow.

Although Eshelby’s theory, like Jeffery’s, was developed
for a single isolated ellipsoidal inclusion, it is applicable to
a population of inclusions, if the inclusions are spaced suffi-
ciently far apart so that their interactions are negligible. The
work of Mandal et al. (2003) suggests that for pure shear if
the spacing between adjacent objects is greater than twice
the size of the object, they are practically non-interacting.

Mathcad� (http://www.mathsoft.com) worksheets (Supple-
ment file) are written based on the algorithm presented above.
A few examples of applying the worksheets are presented
below.

4. Examples of applying the Mathcad worksheets

4.1. Strain and rotation path of a single inclusion

To model the rotation and strain path of an individual inclu-
sion, use Worksheet 1 (Supplement). In the section of ‘‘Input
Variables’’, input the following variables: (1) the inclusion’s
initial state, x0, which is a vector of six components, (2) the
viscosity ratio, r, (3) the matrix flow velocity gradient tensor,
L, (4) the time step dt, (5) the total steps of running, STEPS,
and (6) the number of steps of computation, mm, between out-
put sets. The total actual time duration of the deformation is
STEPS$dt, and the time interval between successive output
sets is mm$dt. At the end of computation, the output is in
the Excel spreadsheet format which can be plotted either
within Mathcad or using other applications.

For all the following modeling experiments, the matrix flow
is a simple shear defined in the geographic coordinate system
(Fig. 2b). The shear plane is the vertical xz-plane, the shear di-
rection is parallel to the x-direction, and the sense of shear is
sinistral.

Numerical experiment set 1: Rotation path and shape evolu-
tion of a triaxial inclusion with initial axial ratio of 5:3:1. The
complete initial state of the inclusion is specified by the sextex
(170�, 45�, 30�, 5, 3, 1). Fig. 3 presents the rotation paths of
a triaxial inclusion up to a matrix shear strain of 10.
Fig. 3aec are, respectively, for a1, a2, and a3 axes for the
case of r¼ 0.1, Fig. 3def for the case of r¼ 1, Fig. 3gei
for the case of r¼ 5, and Fig. 3jel for the case of r¼ 20.
Fig. 3meo presents the rotation paths for a rigid ellipsoid
with the same initial state calculated using Jeffery’s theory
(Jiang, in press). In the case of r¼ 5, the inclusion passes
through an oblate state and the relative lengths of a1- and
a2-axes changed during deformation. Fig. 4 presents the corre-
sponding shape evolution histories of the triaxial inclusion in
a logarithm Flinn plot. For the case of r¼ 5, a1¼ a2 when
the inclusion was perfectly oblate. After that a1< a2. In
Fig. 4, it can be clearly seen that the a1- and a2-axes were
manually swapped after the inclusion passed the oblate state.

Numerical experiment set 2: Rotation path and shape evo-
lution in simple shear of an initially oblate inclusion with ax-
ial lengths 5:5:2 and complete initial state (170�, 45�, 30�, 5,
5, 2). Fig. 5 presents the rotation paths up to a matrix shear
strain of 10. Fig. 5aec are, respectively, for a1, a2, and a3

axes for the case of r¼ 0.1, Fig. 5def for the case of
r¼ 1, Fig. 5gei for the case of r¼ 5, and Fig. 5jel for
the case of r¼ 20. Although the specified initial orientation
of the a1-axis plunges 45� toward 170�, its orientation after
an infinitesimal strain increment is widely different from the
initial orientation. Fig. 6 presents the corresponding shape
evolution histories of the inclusion in a logarithm Flinn plot.

Numerical experiment set 3: Rotation path and shape evo-
lution of an initially prolate inclusion with axial ratio of
5:2:2 and complete initial state (170�, 45�, 30�, 5, 2, 2).
Fig. 7 presents the rotation paths up to a matrix shear strain
of 10. Fig. 7aec are, respectively, for a1, a2, and a3 axes for
the case of r¼ 0.1, Fig. 7def for the case of r¼ 1, Fig. 7gei
for the case of r¼ 5, and Fig. 7jel for the case of r¼ 20.
Similar to the oblate situation, although the specified initial
orientation of the a2-axis trends at 30�, its orientation after
an infinitesimal strain increment is widely different from the
initial orientation. Fig. 8 presents the corresponding shape
evolution histories of the inclusion in a logarithm Flinn plot.

Numerical experiment set 4: Rotation path and shape evo-
lution of an initially spherical inclusion with radius of 5 in

http://www.mathsoft.com
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Fig. 12. Plots similar to Fig. 11 for a numerical experiment identical to that for Fig. 11 except that the viscosity ratio is 5.
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simple shear. The viscosity ratio is 5. Fig. 9 presents the ro-
tation paths of the two principal axes lying in the vorticity-
normal section. The deformation of the inclusion pulsates.
The maximum principal axis of the inclusion starts at 45�

with respect to the shear plane in the vorticity-normal section
and the minimum principal axis starts at 135� with respect to
the shear plane. They both rotate with vorticity in the xy-
plane (Fig. 2b, the vorticity-normal section of the flow)
(Fig. 9a, b). Every 90� of rotation, the inclusion returns to
perfect spherical state (Fig. 9d). The shape of the inclusion
is in the constrictional strain field on the Flinn plot and there
is pulsating strain along the vorticity direction even though
the matrix deformation is a plane-strain simple shear.

4.2. Fabric development of a population of inclusions

To model the development of preferred orientation fabric
and shape fabric defined by a population of inclusions, use
Worksheet 2 (Supplement). First supply all the input vari-
ables. In addition to the flow velocity gradient tensor, L,
the viscosity contrast, r, the time increment, dt, and the total
steps of computation, STEPS, the input variables include the
dataset for the initial orientations and axial lengths of all the
objects and the number of objects. The initial orientations of
the objects can be generated through Excel using the method
described in Jiang (in press). The initial axial lengths and
viscosity ratios can be defined to follow certain distributions
as well. The dataset is inserted into the worksheet. If the Rf/4
data on a plane is required, one must provide the strike and
dip of the plane. Once all input variables are supplied, eval-
uate the worksheet. At the end of computation, the output
can be both in the Excel spreadsheet format and/or in dia-
grams. The final output will include the trend and plunge an-
gles of the principal axes of each and every object, the axial
lengths of each and every object, and the Rf/4 data on the 2D
section. The following examples are all for a simple shear
deformation defined in the geographic coordinate system
(Fig. 2b). The shear direction is parallel to the x-axis and
the sense of shear is sinistral.

Numerical experiment set 5: In this set of numerical exper-
iments, we first compare the 2D deformation of passive ellip-
tical objects based on equations of Ramsay (1967) and
Dunnet (1969) with the modeling results. We generate a pop-
ulation of 100 very elongate inclusions, all with axial lengths
of 5:3:100 (approaching elliptical cylinders). The long axes
of all inclusions are vertical (parallel to the vorticity vector).
The intermediate and short axes are uniform randomly dis-
tributed, in the initial state, on the horizontal xy-plane (vor-
ticity-normal section). This dataset implies that on the
horizontal plane, the elliptical shapes of all inclusions are
identical, with an axial ratio of 5:3. The long axis orienta-
tions are uniform random. When the viscosity ratio is 1,
the inclusions are completely passive. Subject this population
of inclusions to simple shear. Fig. 10a presents the Rf/4 plot
on the vorticity-normal section when the bulk shear strain is
1. The modeling result (Fig. 10a) agrees perfectly with plot
(Fig. 10b) based on the equations of Ramsay (1967, pp.
205e209). Fig. 10c, d present results of numerical experi-
ments for the same population of inclusions deformed to
the same magnitude of bulk shear strain as for Fig. 10a,
but with different viscosity ratios: 5 for Fig. 10c and 0.1
for Fig. 10d.

Numerical experiment set 6: Figs. 11, 12, and 13 present
results of three numerical experiments with viscosity ratios,
respectively, being 1, 5, and 0.1. In these experiments,
a population of 200 inclusions all of the same shape
(with an axial ratio of 5:3:1) are deformed in simple shear
flow. The initial orientations of the inclusions are uniform
randomly distributed in 3D space. Such an orientation data-
set is generated according to the method of Jiang (in press).
The final shear strain of the matrix is 2. Fig. 11 presents
result for the case the inclusions are perfectly passive
(r¼ 1). Both a strong shape fabric (Fig. 11aec) and a pre-
ferred orientation fabric defined by the three axes of inclu-
sions (Fig. 11eeg) are developed at this strain state.
Fig. 11h shows the final inclusion shapes on a logarithm
Flinn diagram. Fig. 12 presents the results of a similar ex-
periment for competent inclusions (r¼ 5), and Fig. 13 the
results of another similar experiment for incompetent inclu-
sions (r¼ 0.1).

5. Concluding remarks

Eshelby’s theory covers the entire spectrum from void be-
havior (r¼ 0) (cf. Schmid and Podladchikov, 2004), to weak
inclusion behavior (0< r< 1), to perfectly passive inclusion
behavior (r¼ 1), through strong inclusion behavior (r> 1),
to rigid inclusion behavior (r / N). For passive inclusions,
the theory is reduced to the theoretical basis for the Rf/4 anal-
ysis in structural geology (Ramsay, 1967; Dunnet, 1969). At
high viscosity ratios, the theory asymptotically approaches
that of Jeffery’s (1922) theory. Eshelby’s theory has been
and will continue to be widely applied in geology and the
broad field of materials science.

The numerical algorithm presented in this paper has han-
dled all singular cases in the general solution of Eshelby’s
equations. The implementation of the algorithm in a fully
graphic mathematics application, Mathcad� (www.mathsoft.-
com) allows numerical investigation based on Eshelby’s the-
ory to be as easily carried out as using a spreadsheet.
Although the examples presented are all in simple shear be-
cause it is the most familiar flow type to geologists, the work-
sheets handle all types of three-dimensional flows with equal
ease. Since the computation is completely under the control
of the modeler through a fully graphic interface, it is easy
for the modeler to customize the computation so that the
type and format of the output data best fit the purpose of the
investigation.
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